Formation of a superatom monolayer using gas-phase-synthesized Ta@Si16 nanocluster ions.
نویسندگان
چکیده
The controlled assembly of superatomic nanocluster ions synthesized in the gas phase is a key technology for constructing a novel series of functional nanomaterials. However, it is generally difficult to immobilize them onto a conductive surface while maintaining their original properties owing to undesirable modifications of their geometry and charge state. In this study, it has been shown that this difficulty can be overcome by controlling the donor-acceptor interaction between nanoclusters and surfaces. Cations of Ta-atom-encapsulated Si(16) cage nanoclusters (Ta@Si(16)) behaving as rare-gas-like superatoms are synthesized in the gas phase and deposited on conductive surfaces terminated with acceptor-like C(60) and donor-like α-sexithiophene (6 T) molecules. Scanning tunneling microscopy and spectroscopy have demonstrated that Ta@Si(16) cations can be densely immobilized onto C(60)-terminated surfaces while retaining their cage shape and positive charge, which is realized by creating binary charge transfer complexes (Ta@Si(16)(+)-C(60)(-)) on the surfaces. The Ta@Si(16) nanoclusters exhibit excellent thermal stability on C(60-)terminated surfaces similar to those in the gas phase, whereas the nanoclusters destabilize at room temperature on 6 T-terminated surfaces owing to the loss of electronic closure via a change in the charge state.
منابع مشابه
Chemisorption of Pyrimidine Nucleotide Onto Exterior Surface of Pristine B12N12 Nanocluster: A Theoretical Study
In this research, the interaction of pyrimidine molecule with pristine B12N12 nanocluster is studied in different phases to understand the effect of environment on the electronic properties of the designated adsorption complexes. To this end, the pyrimidine adsorption over B12N12 in the gas phase and water medium is investigated using density functional theory (DFT) at the B97D/6-31+G(d,p) leve...
متن کاملSelective Liquid-Liquid Extraction of Lead Ions Using Newly Synthesized Extractant 2-(Dibutylcarbamoyl)benzoic Acid
A new carboxylic acid extractant, named 2-(dibutylcarbamoyl)benzoic acid, is prepared and its potential for selective solvent extraction and recovery of lead ions from industrial samples was investigated. The slope analysis indicated that the lead ions are extracted by formation of 1:2 metal to ligand complexes. The effect of the parameters influencing the extraction efficiency including kind o...
متن کاملCyclic control of the surface properties of a monolayer-functionalized electrode by the electrochemical generation of Hg nanoclusters.
Hg(2+) ions are bound to a 1,4-benzenedimethanethiol (BDMT) monolayer assembled on a Au electrode. Electrochemical reduction of the Hg(2+)-BDMT monolayer to Hg(+)-BDMT (at E degrees =0.48 V) and subsequently to Hg(0)-BDMT (at E degrees =0.2 V) proceeds with electron-transfer rate constants of 8 and 11 s(-1), respectively. The Hg(0) atoms cluster into aggregates that exhibit dimensions of 30 nm ...
متن کاملNanoscale Junction Formation by Gas-Phase Monolayer Doping.
A major challenge in transistor technology scaling is the formation of controlled ultrashallow junctions with nanometer-scale thickness and high spatial uniformity. Monolayer doping (MLD) is an efficient method to form such nanoscale junctions, where the self-limiting nature of semiconductor surfaces is utilized to form adsorbed monolayers of dopant-containing molecules followed by rapid therma...
متن کاملThe formate and redox mechanisms of water-gas shift reaction on the surface of Ag: A nanocluster model based on DFT study
Two different possible mechanisms of water gas shift reaction including formate and redox mechanisms on the Ag5 cluster were investigated using DFT computations. All the elementary steps involved in both mechanisms were considered. It was observed that dissociation of H2Oads and OHads, as well as formation of CO2(ads), required activation e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 24 شماره
صفحات -
تاریخ انتشار 2014